nagra.ch - Geologie der Schweiz









Search Preview

Geologie der Schweiz - Nagra

nagra.ch
Glossar Nach Themen Abfälle
.ch > nagra.ch

SEO audit: Content analysis

Language We have found the language localisation:de
Title Geologie der Schweiz - Nagra
Text / HTML ratio 42 %
Frame Excellent! The website does not use iFrame solutions.
Flash Excellent! The website does not have any flash contents.
Keywords cloud der und die im den aus bis Die Alpen sich das von wurden Schweiz mit des durch Millionen nach vor
Keywords consistency
Keyword Content Title Description Headings
der 86
und 86
die 56
im 32
den 31
aus 27
Headings
H1 H2 H3 H4 H5 H6
1 27 1 0 0 0
Images We found 19 images on this web page.

SEO Keywords (Single)

Keyword Occurrence Density
der 86 4.30 %
und 86 4.30 %
die 56 2.80 %
im 32 1.60 %
den 31 1.55 %
aus 27 1.35 %
bis 24 1.20 %
Die 24 1.20 %
Alpen 24 1.20 %
sich 24 1.20 %
das 20 1.00 %
von 19 0.95 %
wurden 18 0.90 %
Schweiz 17 0.85 %
mit 17 0.85 %
des 16 0.80 %
durch 15 0.75 %
Millionen 15 0.75 %
nach 15 0.75 %
vor 14 0.70 %

SEO Keywords (Two Word)

Keyword Occurrence Density
Millionen Jahren 13 0.65 %
56 437 11 0.55 %
41 56 11 0.55 %
der Schweiz 9 0.45 %
den Alpen 9 0.45 %
in der 8 0.40 %
in den 7 0.35 %
437 12 7 0.35 %
Quelle YouTube 7 0.35 %
aus den 6 0.30 %
Zürich Nordost 6 0.30 %
Nördlich Lägern 6 0.30 %
Jura Ost 6 0.30 %
wurden die 5 0.25 %
der Alpenbildung 5 0.25 %
nach Norden 5 0.25 %
In der 5 0.25 %
vor allem 5 0.25 %
Previous Next 5 0.25 %
während der 4 0.20 %

SEO Keywords (Three Word)

Keyword Occurrence Density Possible Spam
41 56 437 11 0.55 % No
56 437 12 7 0.35 % No
30 Millionen Jahren 4 0.20 % No
Felslabor Mont Terri 4 0.20 % No
Zentral und Südalpen 3 0.15 % No
437 11 11 3 0.15 % No
56 437 11 3 0.15 % No
Empfang 41 56 3 0.15 % No
Folge uns auf 3 0.15 % No
Falten und Tafeljura 3 0.15 % No
Karte der Schweiz 3 0.15 % No
späten Phase der 3 0.15 % No
aus den Alpen 3 0.15 % No
Ganggestein Geochemie Geologie 2 0.10 % No
einer späten Phase 2 0.10 % No
In einer späten 2 0.10 % No
kristallinen Untergrund abgeschert 2 0.10 % No
Kreide Kristall Kristallingestein 2 0.10 % No
vom kristallinen Untergrund 2 0.10 % No
Meeres und Süsswassermolasse 2 0.10 % No

SEO Keywords (Four Word)

Keyword Occurrence Density Possible Spam
41 56 437 12 7 0.35 % No
56 437 11 11 3 0.15 % No
41 56 437 11 3 0.15 % No
Empfang 41 56 437 3 0.15 % No
wurden gehören zur Unteren 2 0.10 % No
von einem Meer bedeckt 2 0.10 % No
und mittelaktive Abfälle SMA 2 0.10 % No
im Bereich des Alpengürtels 2 0.10 % No
Gesteine im Bereich des 2 0.10 % No
die Gesteine im Bereich 2 0.10 % No
verformte die Gesteine im 2 0.10 % No
Gebirgsbildung verformte die Gesteine 2 0.10 % No
der Gebirgsbildung verformte die 2 0.10 % No
während der Gebirgsbildung verformte 2 0.10 % No
Druck während der Gebirgsbildung 2 0.10 % No
Der Druck während der 2 0.10 % No
Ionentauscher Ionisierende Strahlung Isotop 2 0.10 % No
Iod Ion Ionentauscher Ionisierende 2 0.10 % No
abgelagert wurden gehören zur 2 0.10 % No
In einer späten Phase 2 0.10 % No

Internal links in - nagra.ch

Nagra
Radioaktive Abfälle – sichere Entsorgung in der Schweiz
Zürich Nordost HAA
Zürich Nordost als möglicher Lagerstandort
Zürich Nordost SMA
Zürich Nordost als möglicher Lagerstandort
Jura Ost HAA
Jura Ost als möglicher Lagerstandort
Jura Ost SMA
Jura Ost - Nagra
Nördlich Lägern HAA
Nördlich Lägern ist ein möglicher Standort für ein Tiefenlager.
Nördlich Lägern SMA
Nördlich Lägern - Nagra
Was entsorgen
Was entsorgen - Nagra
Abfälle
Atomkraftwerke – Abfallentsorgung in der Schweiz
Typen
Typen - Nagra
Volumen
Volumen - Nagra
Transporte
Transporte - Nagra
Strahlung
Strahlung - Nagra
Transmutation
Transmutation - Nagra
Verursacher
Atomkraftwerk AKW – Kernenergie deckt 40 Prozent der Stromproduktion
Kernkraftwerke
Abfälle aus Kernkraftwerken (KKW)
Medizin, Industrie, Forschung
Medizin, Industrie, Forschung - Nagra
Radioaktivität
Radioaktivität ist ein Teil der Natur
Was ist das?
Was ist radioaktive Strahlung?
In der Natur
In der Natur - Nagra
Anwendungen
Uran – durch Kernspaltung Atomenergie erzeugen
Wie entsorgen
Radioaktiver Abfall – Konzept für ein sicheres Endlager
Konzept
Konzept - Nagra
Programm
Programm - Nagra
Tiefenlager
Tiefenlager - Nagra
Nachweis
Nachweis - Nagra
Langzeitsicherheit
Langzeitsicherheit - Nagra
Rückholbarkeit
Rückholbarkeit - Nagra
Heutiger Stand
Heutiger Stand - Nagra
Verpackung
Verpackung - Nagra
Zwischenlager
Zwilag und Bundeszwischenlager in Würenlingen
Inventarisierung
Inventarisierung - Nagra
Tiefenlager
Tiefenlager - Nagra
Tiefenlager HAA
Tiefenlager HAA - Nagra
Tiefenlager SMA
Tiefenlager SMA - Nagra
Forschung
Forschung - Nagra
Laborstudien
Laborstudien - Nagra
Felslabor
Felslabor - Nagra
Naturanaloga
Naturanaloga - Nagra
Techn. Barrieren
Techn. Barrieren - Nagra
Geol. Barrieren
Geol. Barrieren - Nagra
Naturreaktoren
Naturreaktoren - Nagra
Ausland
Ausland - Nagra
Wo entsorgen
Wo entsorgen
Standortsuche
Sachplan geologische Tiefenlager
Standortwahl
Standortwahl - Nagra
Aufsicht
Aufsicht - Nagra
Zeitplan
Zeitplan - Nagra
Partizipation
Standortsuche - Partizipation - Nagra
Auswirkungen
Auswirkungen - Nagra
Standortgebiete HAA
Standortgebiete HAA - Nagra
Standortgebiete SMA
Standortgebiete SMA - Nagra
Jura-Südfuss
Jura-Südfuss als möglicher Lagerstandort
Südranden
Südranden als möglicher Lagerstandort
Wellenberg
Wellenberg als möglicher Lagerstandort
Oberflächenanlage
Oberflächenanlage - Nagra
Zusammenarbeit
Zusammenarbeit - Nagra
Schachtkopfanlagen
Nagra - Schachtkopfanlagen
Erdwissen
Erdwissen - Nagra
Geologie der Schweiz
Geologie der Schweiz - Nagra
Gesteine
Gesteine - Nagra
Wirtgesteine
Wirtgesteine - Nagra
Sondierbohrungen
Bohrungen - Nagra
Quartärbohrungen
Quartärbohrungen - Nagra
Seismik
Seismik - Nagra
Tunnelbau
Tunnelbau - Nagra
Erdbeben
Erdbeben in der Schweiz - Nagra
Unternehmen
Nagra - Unternehmen
Auftrag
Auftrag - Nagra
Leitbild
Leitbild - Nagra
Verhaltenskodex
Verhaltenskodex - Nagra
Kosten
Kosten - Nagra
Gesetz
Gesetz - Nagra
Zusammenarbeit
Zusammenarbeit - Nagra
Organisation
Organisation - Nagra
Verwaltungsrat
Verwaltungsrat - Nagra
Geschäftsleitung
Geschäftsleitung - Nagra
Kader der Nagra
Das Kader der Nagra - Nagra
Mitarbeitende
Mitarbeitende - Nagra
Beratergremien
Beratergremien - Nagra
Geschichte
Geschichte - Nagra
Medienstelle
Medien - Nagra
Stellen
Nagra - Stellen
Kontakt
Kontakt - Nagra
Dienstleistungen
Dienstleistungen - Nagra
Know-how
Know-how - Nagra
Felslabor Grimsel
Felslabor Grimsel - Nagra
Medienmitteilungen
Medienmitteilungen - Nagra
Mediendossiers
Mediendossiers - Nagra

Nagra.ch Spined HTML


Geologie der Schweiz - Nagra Glossar Nach Themen Abfälle Chemie/Physik Forschung/Allgemeines Geologie next prev Abfallgebinde   Alphatoxische Abfälle (ATA)   Bentonit   Brennelement   Dekontamination   Geologisches Tiefenlager   Halbwertszeit   Hochaktive Abfälle (HAA)   Konditionierung   Kontamination   Langlebig mittelaktive Abfälle (LMA)   Moderation   Naturanaloga   Pilotlager   Plasmaofen   Radiotoxizität   Reaktor   Reaktordruckbehälter   Sachplan geologische Tiefenlager   Schwach- und mittelaktive Abfälle (SMA)   Spaltprodukte   Uranpellets   Wiederaufarbeitung   Zwilag   Zwischenlagerung   Atom   Becquerel   Caesium   Diffusion   Elektromagnetische Welle   Elektron   Iod   Ion   Ionentauscher   Ionisierende Strahlung   Isotop   Kernfusion   Kernspaltung   Korrosion   Legierung   Millisievert   Molekül   Neptunium   Neutron   Neutronenstrahlung   Nuklid   Plutonium   Proton   Radioaktivität   Radionuklid   Radium   Radon   Sorption   Strahlung   Technetium   Thorium   Tritium   Uran   Felslabor   Felsmechanik   Freigabegrenze   Kosmische Strahlung   Linearbeschleuniger   Nachhaltigkeit   Partizipation   Planungsperimeter   Radiopharmazeutika   Sachplan   Sicherheitsanalyse   Sicherheitsbarrieren   Transmutation   Zementwässer   Abteufen   Ammonit   Anhydrit   Autochthon   Bergfeuchtigkeit   Dogger   Erdzeitalter   Erosion   Ganggestein   Geochemie   Geologie   Geophysik   Gips   Helvetikum   Hydrogeologie   Jura   Kreide   Kristall   Kristallingestein   Lava   Magma   Mergel   Metamorphose   Molasse   Opalinuston   Paläontologie   Quarz   Salzgestein   Sediment   Seismik   Störung   Tektonik   Tertiär   Tethys   Tone   Trias   Wirtgestein   Nach Alphabet A B C D E F G H I J K L M N O P Q R S T U W Z next prev Abfallgebinde   Abteufen   Alphatoxische Abfälle (ATA)   Ammonit   Anhydrit   Atom   Autochthon   Becquerel   Bentonit   Bergfeuchtigkeit   Brennelement   Caesium   Dekontamination   Diffusion   Dogger   Elektromagnetische Welle   Elektron   Erdzeitalter   Erosion   Felslabor   Felsmechanik   Freigabegrenze   Ganggestein   Geochemie   Geologie   Geologisches Tiefenlager   Geophysik   Gips   Halbwertszeit   Helvetikum   Hochaktive Abfälle (HAA)   Hydrogeologie   Iod   Ion   Ionentauscher   Ionisierende Strahlung   Isotop   Jura   Kernfusion   Kernspaltung   Konditionierung   Kontamination   Korrosion   Kosmische Strahlung   Kreide   Kristall   Kristallingestein   Langlebig mittelaktive Abfälle (LMA)   Lava   Legierung   Linearbeschleuniger   Magma   Mergel   Metamorphose   Millisievert   Moderation   Molasse   Molekül   Nachhaltigkeit   Naturanaloga   Neptunium   Neutron   Neutronenstrahlung   Nuklid   Opalinuston   Paläontologie   Partizipation   Pilotlager   Planungsperimeter   Plasmaofen   Plutonium   Proton   Quarz   Radioaktivität   Radionuklid   Radiopharmazeutika   Radiotoxizität   Radium   Radon   Reaktor   Reaktordruckbehälter   Sachplan   Sachplan geologische Tiefenlager   Salzgestein   Schwach- und mittelaktive Abfälle (SMA)   Sediment   Seismik   Sicherheitsanalyse   Sicherheitsbarrieren   Sorption   Spaltprodukte   Störung   Strahlung   Technetium   Tektonik   Tertiär   Tethys   Thorium   Tone   Transmutation   Trias   Tritium   Uran   Uranpellets   Wiederaufarbeitung   Wirtgestein   Zementwässer   Zwilag   Zwischenlagerung     Nagra   D E F Ihre Ansprechpartner Regionen Medienstelle Dienstleistungen Geschäftssitz Previous Next Hotline Tiefbohrungen Gratis Telefon Hotline Tiefbohrungen 0800 437 333 info@nagra.ch Zürich Nordost Philip Birkhäuser Zürich Nordost +41 56 437 12 73 Zürich Nordost HAA Zürich Nordost SMA Jura Ost Olivier Moser Jura Ost +41 56 437 12 68 Jura Ost HAA Jura Ost SMA Nördlich Lägern Dr. Lukas Oesch Nördlich Lägern +41 56 437 12 67 Nördlich Lägern HAA Nördlich Lägern SMA Previous Next Leiter Medienstelle Patrick Studer Leiter Medienstelle +41 56 437 12 06 +41 76 579 36 50 Previous Next Internationale Dienstleistungen und Projekte Dr. Stratis VomvorisBereichsleiter Internationale Dienstleistungen und Projekte +41 56 437 13 24 Previous Next Eventik Heinz Sager Eventik +41 56 437 12 28 +41 79 700 70 75 Besucherwesen Renate Spitznagel Besucherwesen +41 56 437 12 82 Informationsservice Franziska Stalder Informationsservice +41 56 437 12 53 Empfang Annemarie Di Iorio Empfang +41 56 437 11 11 Empfang Elsbeth Melion Empfang +41 56 437 11 11 Stellvertretung Empfang Trudy Marty Stellvertretung Empfang +41 56 437 11 11 Previous Next Menu tropical Was entsorgen Abfälle Typen Volumen Transporte Strahlung Transmutation Verursacher Kernkraftwerke Medizin, Industrie, Forschung Radioaktivität Was ist das? In der Natur Anwendungen Wie entsorgen Konzept Programm Tiefenlager Nachweis Langzeitsicherheit Rückholbarkeit Heutiger Stand Verpackung Zwischenlager Inventarisierung Tiefenlager Tiefenlager HAA Tiefenlager SMA Forschung Laborstudien Felslabor Naturanaloga Techn. Barrieren Geol. Barrieren Naturreaktoren Ausland Wo entsorgen Standortsuche Standortwahl Aufsicht Zeitplan Partizipation Auswirkungen Standortgebiete HAA Jura Ost Nördlich Lägern Zürich Nordost Standortgebiete SMA Jura Ost Jura-Südfuss Nördlich Lägern Südranden Wellenberg Zürich Nordost Oberflächenanlage Zusammenarbeit Schachtkopfanlagen Erdwissen Geologie der Schweiz Gesteine Wirtgesteine Sondierbohrungen Quartärbohrungen Seismik Tunnelbau Erdbeben Unternehmen Auftrag Leitbild Verhaltenskodex Kosten Gesetz Zusammenarbeit Organisation Verwaltungsrat Geschäftsleitung Kader der Nagra Mitarbeitende Beratergremien Geschichte Medienstelle Stellen Kontakt Dienstleistungen Know-how Felslabor Grimsel opener tropical Infocorner tropical Tiefbohrungen Aktuelle Informationen Medien Medienverteiler Medienmitteilungen Mediendossiers Medienmitteilungen Dritter News News Newsletter Newsletter bestellen Events Führungen Felslabor Grimsel Felslabor Mont Terri Schule-Jugend-Portal Publikationen Downloads Geschäftsberichte Technische Berichte Arbeitsberichte Broschüren Nagra Info Ältere Publikationen Mediendossiers DVDs bestellen Stellen Kontakt Nagra Blog Erdwissen Home > Wo entsorgen > Erdwissen > Geologie der Schweiz Geologie Schweiz Die Schweiz hat eine interessante Geologie zu bieten. Die Schweiz bietet auf kleinster Fläche eine Vielfalt von Landschaftsformen – vom Alpenbogen über das Mittelland bis zum Jura. Hier finden Sie die wichtigsten Informationen zur Entstehungsgeschichte, Geologie und den charakteristischen Gesteinen der einzelnen Landschaften. Wussten Sie, dass Teile der Schweiz mehrfach von einem Meer bedeckt waren? Besuchen Sie doch eines der beiden Schweizer Felslabore und erfahren Sie wie der Opalinuston oder der Granit entstand. Erleben Sie «live», wie es unter dem Erdboden aussieht. Übersicht Jura Mittelland Nordalpen Alpen next prev Geologische Entstehungsgeschichte der Schweiz. Meeresablagerungen, die Faltung der Alpen und des Juras, die Abtragung der Gebirge sowie die Vergletscherungen prägten das Aussehen der heutigen Schweiz. Die geologische Karte der Schweiz zeigt die geologischen Verhältnisse und die Verbreitung der Gesteine an der Erdoberfläche. Geologische Karte der Schweiz. Quelle: swisstopo Die Schweiz lässt sich von Norden nach Süden in vier unterscheidbare Einheiten gliedern. In der vereinfachten Karte sind diese gut ersichtlich: Falten- und Tafeljura im Norden und Nordwesten bestehend aus Kalken, Mergeln, Tonen und Anhydrit/Gips Mittelland mit Molassebecken gefüllt mit Sandsteinen, Nagelfluh, Silt und Mergeln Nordalpen mit Helvetikum vor allem aus Mergeln und Kalken Zentral- und Südalpen mit Kristallin vor allem aus Graniten und Gneisen Vereinfachte geologische Karte der Schweiz mit Profillinie (siehe Abb. unten). Quelle: Nagra Geologisches Profil der Schweiz von Nordnordwesten nach Südsüdosten (Nummern siehe Text). Quelle: Nagra NTB 14-02, Dossier III (stark vereinfacht). Tröge entstehen im Grundgebirge Kristalline Tiefen-, Umwandlungs- und Ganggesteine [1] entstanden in der Erdkruste. Vor über 250 Millionen Jahren senkten sich in der Perm- und der Karbon-Zeit Tröge [2] ins kristalline Grundgebirge ein. Diese wurden dann mit Abtragungsschutt des umliegenden Gebirges gefüllt. Die Überreste eines solchen Permokarbontrogs finden sich unter der Nordschweiz zwischen Frick und Konstanz. Jura-Meer bedeckt Schweiz In der Jura-Zeit war die Schweiz meistens von einem Meer bedeckt. Am Ozeanboden lagerten sich Sedimente ab, die heute als Gesteine [3] auf dem älteren Untergrund liegen. In der späten Kreidezeit und im Tertiär wurden durch Zusammenschieben der adriatischen und der eurasischen Erdplatte die Alpen gebildet. Während einer relativ späten Phase der Alpenbildung wurden die Gesteine des helvetischen Ablagerungsraumes in Gesteinsstapel zerlegt, verfaltet und nach Norden verfrachtet [4]. Zwischen den Stapeln liegt das noch ins Meer geschüttete Abtragungsmaterial der sich bildenden Alpen [Flysch 5]. Weiteres Abtragungsmaterial der sich hebenden Alpen, sogenannte Molasse, sammelte sich vor den Alpen im Molassebecken [7] an. Alpenbildung führt zur Jurafaltung Der Druck der entstehenden Alpen wirkte sich bis in die Nordschweiz aus. Durch diesen Druck wurden die Sedimentgesteine vom kristallinen Untergrund abgeschert und zum Faltenjura [6] aufgefaltet. Ausschnitt aus der geologischen Zeitskala(in Millionen Jahre) Karbon: -358,9 bis -298,9Perm: -298,9 bis -252,2Trias: -252,2 bis -201,3Jura: -201,3 bis -145Kreide: -145 bis -66Tertiär (Paläogen & Neogen): -66 bis -2,588Quartär: -2,588 bis 0 Falten- und Tafeljura Falten- und Tafeljura bestehen im Wesentlichen aus den Gesteinen Kalk, Mergel und Ton sowie Anhydrit/Gips. Der von der Nordwestschweiz bis in die Region Schaffhausen verlaufende Tafeljura bildet aufgrund der unterschiedlichen Erodierbarkeit dieser Gesteinstypen eine sogenannte Schichtstufenlandschaft. Vor allem in der Nordwestschweiz sind die Schichten zusätzlich durch Nord-Süd-verlaufende Störungszonen in Schollen aufgeteilt. Diese typische Oberflächengestalt des Tafeljuras mit höher gelegenen Bereichen und Tälern, bekannt als Bruchschollengebirge, bildete sich mit der Entstehung des Rheingrabens in der Erdneuzeit, vor rund 40 Millionen Jahren. Der Faltenjura beschreibt einen Bogen, der von der Region Genf und dem angrenzenden Frankreich im Westen bis nach Baden im Osten verläuft. Im Faltenjura wurden die Sedimentgesteine aufgrund der alpinen Gebirgsbildung gestaucht und dabei verfaltet. Schön erkennen lassen sich die mächtigen Kalkablagerungen zum Beispiel am Creux du Van (NE). Der Faltenjura wird nur an einzelnen Stellen von engen Quertälern, den Klusen, durchbrochen. Durch eine Klus führt häufig eine Strasse; sonst brauchen Strassenverbindungen einen Tunnel oder Pass. Eindrückliche Felsarena aus Malmkalk, die durch Auffaltung und Abtragung entstand. «Le Creux du Van, le Grand Canyon suisse», Video in französischer Sprache. Quelle: YouTube, www.creuxduvan.com Den Faltenjura Untertag erleben Tunnel durch Auffaltungen hindurch bieten im Jura einen einfachen Zugang zu Gesteinsschichten, die im Mittelland vielerorts in einigen hundert Metern Tiefe liegen. Dies trifft insbesondere auf den Opalinuston zu. Als Wirtgestein wird er dereinst die radioaktiven Abfälle an einem zu ermittelnden Tiefenlagerstandort sicher einschliessen. Der Opalinuston wird im Felslabor Mont Terri bei St-Ursanne erforscht. Der Zugang zum Felslabor erfolgt via Sicherheitsgalerie des «Mont Terri»-Autobahntunnels. Bereits nach kurzer Fahrt durch wasserdurchlässige Kalkschichten gelangt man in den wasserundurchlässigen Opalinuston. Dieses Sedimentgestein, das im Jurameer entstanden ist, enthält viele Fossilien wie Ammoniten. Das Felslabor kann nach Voranmeldung kostenlos besichtigt werden. «Tunnel Flight», Fahrt durchs Felslabor Mont Terri. Quelle: YouTube, swisstopo Molasse – Mittelland Das Mittelland liegt zwischen dem Jura im Norden und den Alpen im Süden und erstreckt sich vom Bodensee bis an den Genfersee. Es ist durch markante Flussläufe und Seen geprägt. «Geologie Schweiz – Mittelland im Tertiär: Molassebecken», Quelle: YouTube, tZinar Molassebecken mit Gesteinsschutt aus den Alpen Tief im Untergrund des Mittellands befindet sich das kristalline Grundgebirge. Darauf liegen Sedimentabfolgen aus dem Erdmittelalter (vor allem Meeressedimente wie Kalke und Tone). Darüber liegt die sogenannte Molasse, Abtragungsschutt aus den entstehenden Alpen. In der Endphase der Alpenbildung sank die Erdkruste unter der Last des Gebirges und es entstand im Alpenvorland eine Senke. Diese wurde laufend mit Ablagerungsschutt (Geröll, Sand, Silt und Tone) aufgefüllt, der von Flüssen während rund 30 Millionen Jahren aus den Alpen nach Norden transportiert wurde – das Molassebecken bildete sich. «Erosion & Sedimentation – Erosionsformen & Sedimente einfach erklärt», Quelle: YouTube, Die Merkhilfe Meeres- und Süsswassermolasse enthalten Versteinerungen Erosionsschutt aus den Alpen wurde im Meer respektive in Seen und Flusstälern abgelagert; dementsprechend gibt es Meeres- und Süsswassermolasse. Die Ablagerung erfolgte sortiert nach Korngrösse: Feinere Partikel wie Tonplättchen wurden weit ins Meer hinaus transportiert, bis an den Rand des heutigen Jura. Gröbere Partikel konnten in den Flüssen nicht so lange in Schwebe gehalten werden und blieben näher an den Alpen in den Flüssen liegen, beispielsweise als Kiesbänke. Meeresmolasse ist feinkörnig und besteht aus Mergel, Sandstein, Silt und Ton. Süsswassermolasse enthält mehr grobkörnige Anteil wie Nagelfluh und Sandstein. Verschiedene Schichten sind reich an Versteinerungen: Süsswassermolasse enthält Blätter, Süsswasserschnecken und -muscheln; Meeresmolasse enthält Meeresschnecken und -muscheln sowie Haifischzähne. Flüsse und Bäche transportieren Gesteinsmaterial über grosse Strecken. Murgang im Illgraben (Leuk, VS). Der Bergbach führt nach einem heftigen Gewitter grosse Mengen an Felsbrocken, Gesteinsschutt und Schlamm. «Illgraben 28 juillet 2014, front de lave», Quelle: YouTube, PiperLambert Untere Meeresmolasse entsteht In die Senke, die in der Endphase der Alpenbildung im Mittelland entstand, drang Meerwasser ein. Sedimente wie Mergel und Sandsteine, die vor zirka 35 bis 30 Millionen Jahren darin abgelagert wurden, gehören zur Unteren Meeresmolasse. Untere Süsswassermolasse entsteht Vor rund 30 Millionen Jahren wurden – als Folge der verstärkten Hebung der Alpen – grössere Mengen an Abtragungsschutt ins Molassebecken verfrachtet, so dass das Meer schnell verlandete. Die Sedimente, die dann vor 30 bis 20 Millionen Jahren vor allem in Flüssen abgelagert wurden, gehören zur Unteren Süsswassermolasse. Die grobkörnigeren Komponenten wurden als Nagelfluh abgelagert. In einer späten Phase der Alpenfaltung wurden die Alpen-nah gelegenen Molassegesteine ihrerseits zusammengestaucht, verschoben und aus dem Molassebecken gehoben (z. B. Entstehung der Rigi). Obere Meeresmolasse Als der Meeresspiegel anstieg, wurde das Mittelland vor zirka 20 Millionen Jahren erneut vom Meer überflutet. Im schmalen Flachmeer lagerten sich vor zirka 20 bis 18 Millionen Jahren die Sedimente der Oberen Meeresmolasse wie Sandstein und Mergel ab. Gleichzeitig bildeten sich Deltas und bereits Schuttfächer. Obere Süsswassermolasse Vor 18 bis 14 Millionen Jahren zog sich das Meer wieder zurück. Im Mittelland gab es viele Seen und Flüsse, grosse Schuttfächer beim Hörnli und Napf mit viel Kies sowie ausgedehnte Schwemmebenen mit Sand, Silt und Schlamm. Diese Sedimente der Oberen Süsswassermolasse wurden zu Konglomeraten wie Nagelfluh, Sandsteinen und Mergeln verfestigt. Landschaft im Zürcher Weinland mit Blick über das Molassebecken bis zu den Alpen am Horizont. Bild: Nagra Mittelland wird durch Eiszeit geprägt Über der Molasse liegen Lockergesteine (Schotter, Geröll, Kies, Sand, Silt, Ton ...) aus den Eiszeiten der letzten zwei Millionen Jahre, die durch Flüsse und Gletscher verfrachtet wurden. Gletscher und Schmelzwasser besitzen viel Erosionskraft und haben die heutige Mittelland-Topografie wesentlich geprägt. Davon zeugen die zahlreichen Südsüdost-Nordnordwest verlaufenden und lang gezogenen Alpenrandseen, deren Felsbett meist unter mächtigen Lockergesteinen liegt. Diese glazialen Lockergesteine sind nicht verfestigt und bilden daher zum Teil einen schwierigen Baugrund, bieten aber auch Rohstoffe in Form von Kies und Trinkwasservorräten. In glazialen Lockergesteinen werden ab und zu auch Mammutzähne gefunden. Helvetikum – Nordalpen Die Schweizer Alpen lassen sich aus Schweizer Sicht in Nord-, Zentral- und Südalpen unterteilen; insbesondere für den gesamten Alpenbogen gibt es aber noch weitere Einteilungen. Das sogenannte Helvetikum bildet vom Thunersee bis ins Rheintal den Alpennordrand. Es besteht aus kalkigen und mergeligen Sedimenten, die sich in der Zeit vor 250 bis 65 Millionen Jahren im flachen Urmittelmeer (Tethys) ablagerten. «So kam der Fisch auf den Berg - Dokumentation von NZZ Format (2005)», Film zur Entstehung der Alpen. Quelle: YouTube, NZZ Format Ganze Berge werden nach Norden verschoben Der Druck während der Gebirgsbildung verformte die Gesteine im Bereich des Alpengürtels. Viele der Sedimente aus der Tethys sind heute nicht mehr an ihrem Ablagerungsort, denn sie wurden abgeschert, verfaltet und mehrere Kilometer nach Norden transportiert. Dies lässt sich beim Helvetikum erkennen: In einer späten Phase der Alpenbildung wurden die helvetischen Sedimente durch den Druck der von Süden vorrückenden afrikanischen Kontinentalplatte vom kristallinen Untergrund abgeschert und bis zu 50 Kilometer weit nach Nordwesten überschoben, wo sie heute mächtige Deckenstapel bilden. Die in den Gesteinspaketen enthaltenen, weichen Schichten aus Mergel und Tonschiefer dienten als Schmiermaterial. Helvetische Decken treten beispielsweise beim Säntis, Titlis und den Churfirsten auf. Die Churfirsten sind ein eindrückliches Beispiel für die Deckenstapel des Helvetikums. Bild: © swisseduc / Dr. Jürg Alean Kristallin – Zentral- und Südalpen Die Schweizer Alpen bilden den zentralen Teil des gesamten Alpenbogens, der sich von Nizza am Mittelmeer bis nach Wien erstreckt. Die hohen Erhebungen und Gletscher sind charakteristisch für die Zentralalpen, die neben Sedimentgesteinen auch kristalline und metamorphe Gesteine enthalten. Viele Gipfel sind noch spitz und scharfkantig, denn sie wurden während der Eiszeiten nicht von Eis bedeckt beziehungsweise nicht von diesem abgeschliffen. «Gebirgsbildung & Plattengrenzen einfach erklärt – Wie entstehen Gebirge?», Quelle: YouTube, Die Merkhilfe Afrika und Europa treffen aufeinander Geologisch gesehen treffen in den Alpen Afrika und Europa aufeinander. Afrika bewegt sich seit rund 130 Millionen Jahren nach Norden und drückt gegen den eurasischen Kontinent. Die Alpenbildung setzte am Ende der Kreidezeit vor rund 80 Millionen Jahren ein, als Folge der beginnenden Kollision des afrikanischen mit dem europäischen Kontinent, und erfuhr ihren Höhepunkt vor etwa 30 Millionen Jahren. Durch den Schub aus Süden und die Einengung der Gesteinsmassen wichen diese nicht nur in die Höhe, sondern auch in die Tiefe aus. Die Dicke der kontinentalen Erdkruste wuchs auf weit über 50 Kilometer an. Alpen sind wie ein schwimmender Eisberg Die Alpen bestehen grösstenteils aus kontinentaler Kruste, die eine kleinere Dichte besitzt, als der darunterliegende Teil des Erdmantels. Aufgrund der Verdickung während der Alpenbildung ist die Erdkruste im Alpenraum dicker als im Vorland. Die Situation lässt sich mit einem Eisberg vergleichen, der im Wasser schwimmt. Eis besitzt eine geringere Dichte als Wasser. Wenn der Eisberg oben abschmilzt, so steigt er aus dem Wasser auf, bis das Gleichgewicht wiederhergestellt ist. Erosion führt zur Hebung der Alpen Auch in den Alpen gibt es einen Verlust an Masse. Verantwortlich dafür sind Verwitterung und Erosion. Bereits als die Alpenbildung begann, wurde Material vor allem durch Prozesse abgetragen, bei denen die Schwerkraft, fliessendes Wasser oder Wind beteiligt sind. Dieses Material lagerte sich im Mittelland als Molasse ab. Diese Sedimentumlagerung wurde insbesondere während diversen Vergletscherungen in jüngerer Zeit noch verstärkt. Erdbeben durch Alpenhebung Die Gegend um Brig und um Chur hebt sich bis zu 1,5 Millimeter pro Jahr. In diesen Gebieten treten auch häufiger Erdbeben auf. Die andauernde Hebung und Deformation und die damit verbundene Erosion sind ein wichtiger Grund dafür, dass der Alpenraum für ein Lager für hochaktive Abfälle nicht in Frage kommt. Granitlandschaft in der Zentralschweiz. Die Kuppe in der Mitte des Bildes wurde durch Gletschereis rundgeschliffen, während die Spitzen im Hintergrund ihre Kanten behalten haben. Bild: Nagra Zentralmassive mit kristallinem Grundgebirge Während im Mittelland das kristalline Grundgebirge unter der Molasseschüttung und unter Meeressedimenten verdeckt liegt, ist es in den Zentralalpen sichtbar an der Oberfläche. Die Zentralmassive wie beispielsweise das Aar-, das Gotthard- oder das Mont Blanc-Massiv im Südwesten unseres Landes bestehen hauptsächlich aus granitischen Gesteinen und Gneisen. Der Druck während der Gebirgsbildung verformte die Gesteine im Bereich des Alpengürtels stark. Sowohl das Aar- als auch das Gotthard-Massiv wurden zwar gestaucht aber nicht von ihrem Entstehungsort wegbewegt. Diese Massive sind von Sedimenten umgeben, die verschiedentlich metamorph überprägt wurden. Im Felslabor Grimsel forscht die Nagra an der Entsorgung radioaktiver Abfälle. Es liegt in granitischen Gesteinen das Aar-Massivs und kann gegen Voranmeldung besucht werden. Markante Störungszone mitten durchs Tessin Weiter südlich im Tessin liegen zuerst die penninischen Kristallindecken und dann die «Insubrische Linie». Bei dieser markanten Störungszone, die von Osten nach Westen durch die Alpen verläuft, trifft die Adriatische Platte auf die Europäische Platte. Südlich dieser Linie liegen die Südalpen, die einerseits aus Kristallin und andererseits im Gebiet südlich von Lugano aus Sedimenten bestehen. Die Zentralalpen mit Penninikum und ein Grossteil der Südalpen bestehen somit aus Kristallin. Mehr Information Informationsangebot der Nagra Führung durch das Felslabor Mont Terri Führung durch das Felslabor Grimsel Taschenbuch Stein Themenheft Erosion Gesteine der Schweiz Nagra Blog Weitere Informationsquellen Landschaftsreliefs Geologie-Portal Geoevents in Ihrer Nähe Online-Karten zur Geologie Folge uns auf Facebook Folge uns auf Twitter Folge uns auf YouTube Nagra Unser Zertifikat Kontakt FAQ Glossar Links Sitemap Impressum AGB Created by Plan.Net Suisse AG